GAS-DYNAMIC EQUATIONS INVOLVING VIBRATIONAL RELAXATION

L. A, Pal'tsev UDC 533.70

We derive the gas-dynamic equations in the Navier —Stokes approximation for weak exeita-

tion of molecular vibrational states. We determine the distribution function for the density
of the numbers determining occupancy of the vibrational states of the molecules. We show

that the relaxational pressure is proportional to the deviation of the vibrational energy den-
sity from its local-equilibrium value for the temperature of the translational and rotational
degrees of freedom of the molecules.

The structure of the gas-dynamic equatio'ns in the presence of vibrational relaxation was considered
in [1-6]. Depending on the degree of excitation of the vibrational states of the molecules, essential changes
occur not only in the kinetic coefficients but also in the structure of the transport equations. Greatly de-
tailed studies of the so-called "two-temperature approximation" have been made. In the general case [3, 6]
such an approximation is not sufficient,so that it is necessary to supplement the known system of gas-dy-
namic equations with an equation for ngs the number of molecules per unit volume existing at the vibrational
level v.

It is known 3] that for the simplest model of vibrational transitions, the harmonic oscillator with
single quantum jumps, it is sufficient merely to augment the gas-dynamic equations in the Euler approxi-
mation with a relaxational equation for the vibrational energy density, and there is no need to consider an
equation for ny. However, it is not clear whether this procedure is valid for the gas-dynamic equations in
the Navier—Stokes approximation. In investigating this problem it is found that general concepts concern-
ing the structure of the collision integral are no longer sufficient and that is necessary to consider a con-
crete model for the interaction between molecules and to obtain an explicit expression for the collision
integral.

In the present paper we consider a diatomic gas for a weak excitation of the vibrational states of its
molecules when the deviation £ of the interatomic distance in the molecule from its equilibrium value is
small. In this case, following [7], we can write the molecular interaction potential, and hence also the col-
lision transifion probabilities, in the form of a series in £. If in the collision integral we restrict our-
selves to the contribution of terms of order £%, we obtain a kinetic equation which takes into account single
gquantum vibrational transitions. We find that even for such a simple intermolecular interaction model it
is necessary, in the Navier—Stokes approximation, to take into account an equation for ny.

1. It is possible to determine the nonequilibrium sfate of a single~component polyatomic gas in the
absence of external fields [8] if we know the monomolecular distribution function (Wigner function) f(r, p;
I, t), where r and p give the position and momentum of the center of mass of the molecule, and { is the total
set of quantum numbers defining its internal energy E;. Evolution of this function with the time t is deter-
mined from the kinetic equation
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where FQ) = f(r, pi; Iy, t)»

I, )= a1y a2y d2ew (12; 1'2)8 (Zp) [/* (1) F*(2) — F* (1) £* )] (1.2)

I(f, f) is the collision integral.

Here w(12; 1'2") is the probability of a transition per unit time from the state (ypy, Ii'ly) to the state
{p1s P2s lily), which is expressed in terms of the matrix elements of the T-operator in the space of the char-
acteristic states of the noninteracting molecules 1 and 2 in the system of their center of inertia through the
known relationship [9] :
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where F*(j) = g" () f(j)» M; are the quantum numbers for which the state corresponding to Egj is degenerate,
and g(j) is the multiplicity of the degeneracy of this state:

{ato=(ap., 8(Zp) =m0 +p:—p ~ 1)
I
We consider the case in which the diatomic molecular interaction potential can be represented in the
form

2 2
D(12) = 2 X Qis{iru— 1)) (1.3)
i=1 j=1

where r;; is the coordinate of the i-th atom in the j-th molecule. We denote by Ty, £, and uy, respectively,
the coordinate of the center of mass, the deviation of the interatomic distance from its equilibrium value
Ry, and the unit vector directed from the second atom towards the first afom in the j~th molecule. We shall
assume that ¢;/Ry <1. Then, following [7], we can represent &(12) as a series in gj. With accuracy up to
the first order in £ from Eq. (1.3) we have

@ (12) = OV (12) + DLV () 1.4)
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Here &) (12) is the interaction potential of (rigid) rotators, obtainable from Eq. (1.3) by replacing r ji by

nmnu
my - ma

i R
Ri=r;+(— 1) Fu, p=
(]
and m; is the mass of the i~th atom

2 2
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In the molecular internal energy operator we take into account terms of order gz; i.e., we neglect the
anharmonic vibrations and the relationship of vibrations with rotations. Then the internal state of the
molecule is determined {10] by the quantum numbers J, M, and v, where J and M are the quantum numbers
of the total internal moment and its projection on the z axis, and v is the vibrational quantum number.

Moreover,
Eso=Ey+K, E;=R@RNVIJI+1), E,=hv+1)
D8 =ben ) @ +1)

v is the characteristic frequency of the oscillator and 60, o' 1s the Kronecker symbol.

Taking note of the definition of the T-operator [9] and of the expression (1.4) for the molecular inter-
action potential, then, taking into acecount terms of the second order in ¢, we can write the collision integral

in the form
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IGH=TIGH+IYHH TV D (1.5)

Here the collision integral

19, =3 {araza2w® (12, 12) 17, * 1) 1,5 2) — £,* (1) 1,*(2)] (1.6)

only takes into account the contribution from collisions for which the vibrational states of the molecules do

not change:
\at = Jdpy, 1, (1) = { (&, pu Jwy)
-71
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Ty is the T-operator for the model of rotators, & = (J;M;), and
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The collision integral
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takes into account the contribution from collisions with single-guantum vibrational transitions, where

’ 3 2
QO (jy | % \ 8 (2
&) 2ol aEe

76y 1 a].,a
WP (1212) = 5o > K pmz

MM My My
Q(i) are the Mellor operators [9] for the model of rotators, and &(x) = S(Ej—Ey + hv).
The collision integral 1) (fs f) is obtained from 10) {f> f)} by replacing wo) (12; 12" by
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where H is the total Hamiltonian of the two rotators in the system of their mass centers. From the invari-
ance of H and V{(j) relative to spatial reflections and time inversion [9], it follows that

w®12; 172y =w® (1'2;12), k=0.2 1.8)

Wi (12; 12) = W,V (1'2'; 12)

2. We derive the gas-dynamic equations using the kinetic equation (1.1) with the collision integral in
the form (1.5). We consider the case for which the "length of the vibrational relaxation" is of the order of
the characteristic dimension of the spatial heterogeneity in the gas [1, 3, 11], i.e., for which the ratio of
1M and 1@ to 10 is of the order of the Knudsen number, which we may assume to be small.

From the expression (1.6) for 10) it follows that

D a1, =0

3
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for

1
Y1 = Oows P = Prs Py = 2_m_p12 + E-f: (2.1)

Consequently, the following guantities vary slowly over times on the order of the free path time, de-
fined for the translational and rotational states of the molecules: ny(r, t), the number of molecules per
unit volume which are in the vibrational state v; u(r, t), the mean speed of the molecules; and e(r, t), the
internal energy (translational and rotational) density, calculated for a single molecule. We introduce the
notation

Ni=n, Ny=mnu, N,=n(e+,mu?) (” =Z"”)

v

Then the local gas-dynamic variables may be defined in terms of the distribution function in the fol-
lowing way:

No=2fates, ) =123 2.2)

Taking the definition (2.2) into account, we obtain from Eq. (1.1), with the collision integral in the
form (1.5), the system of gas-dynamic equations

Dn -
.E‘-’ = —n,divu —divj, + Q,
Du :
'zmﬁ?= — Div P . (2'3)
De - . . D a
n5; = —divq — PGradu — Q. (*—Dt =% T (u grﬂd))

Here the stress tensor P and the energy flow q are defined in the usual way {8]

N o (2.4)
P”=—,L-ngipx*lpl*"fr,(l)

L2
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)

while the current j; and the source Qy, in the equation for the transport of the density of vibrational states,
as well as the source Qg in the energy equation, are given by

. ; 2.5)
Jo = -r% Sdipl*lfv (1)

0.={a1%¢. . Q.= 3\ hwnQ,

We observe that the vibrational energy density per molecule for the model under consideration may
be defined as follows:

e (v, £) = n71(x, £) Dy hvon, (x, t)

To derive the gas-dynamic equations we use the Chapman-Enskog method. As the additional condi-
tions on the coefficients in the expansion of £ in a series with respect to the Knudsen number, we require
that the local gas-dynamic variables be defined by a term of zero order. Moreover, in place of e we use
the inverse local temperature, which we define in the usual way [8]

e=3/28+e;(B)
where

e(B)= Q' D g(1)Esexp(—BEs), Q= JZgu)exp(« 3E;)
Jy 1

440



3. We consider the zeroth approximation with respect to the Knudsen number. The distribution func-

tion in this approximation satisfies the nonlinear system of integral equations

J© (]c(o)’ O = O.

Using the function
Iy ()

H— ;Sdm () 1n {W}
the relations (1.8), and the definition of the local gas-dynamic variables, we can show similarly [2] that

10 W) = nof () =y (Y exp [—8(% + 5] 8.1)

Then, noting the definition of the currents and sources in Eqs. (2.4) and (2.5), we obtain, in the zeroth

approximation,
B9=0, (©=0, PO _ gip, 3.2)
(3.3)

0,9 = O + 1) Rt + 101 — {1 (2 + 1) + v} 1]

Qe(O) — nrk—l (eh' . 60)
Here y = exp (—ghv), ey = hvy (1—y™

Tl = %Sdi’d?didzé(—{-) F* (1) F*(2) 2 WY (12 1°2). F*(j) = g™ (j) F (j)
=Tl —17) (3.4)

Consequently, in the Euler approximation the system of gas-dynamic equations has the form

Dn . Du -
I)-t—=-—ndlvu, anT=~—grad(nB )
D8 5 €% . - (3.5)
=8 ey, + 3t diva
De, - Dn,, .
=—w e —e) 7= —nydivu

Dt

where the vibrational relaxation time 7} is determined from the relation (3.4) and

4. We proceed now to determine the first order correction with respect to the Knudsen number to
the distribution function. This function, which we denote by f‘l,, is determined from a nonhomogeneous sys-

tem of linear integral equations with symmetric kernels (see relations (1.8))

5+ 3 (pagradg) | 757 (1) = 19 (GO, 1) — IO (0, f0) = 1O (19, 1) 1 19 (19, ) i
subject fo the additional conditions
' 4.2)

Slatwps, @y =0

4

where the y; are given by the relations (2.1). Taking note of the expression for I(l) and for I(Z), we have

I® (fO, f0) = 0
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19, 1) = 3\ By (A{] 1y (1—1) = “2(A“’ 8;7)

J=1

where

B 8] = 0,87 (04 B0 b (1o +1)a®.
A9 — ) B A AT

8(+) F* (1) F*(2))

@ _ 1 36 Q) . 479
AP = navazazw, (12,12){6(_)1;*(1)5’*(2)

'We remark that from Eq. (4.4) it follows that

DBy =0

"

(4.3)

(4.4)

4.5)

We proceed in the usual way [3] with the left side of the system of Egs. (4.1), using the expression
(3.1) for f‘? and the Euler Eq. (3.6). Then, taking note of the additional conditions (4.2), we can show that

£,00) =nr, FOD, (1)
where

@y, (1) = DD (1) — i D Co (1) pr* grad ny, +— G, (1)

{4.8)

4.7)

Here tb(l) (1) is a known function of the first approximation [8], defined for'the model of the rotators,

and the functions Cyv'(1) and Gy (1) satisfy the systems of equations

%‘— F(1) (61,‘!17' —Cy) = Z CoiCod by (1/p*Cov)

- cle (1) €k + ZCU'BUW':[A’IH:)] = zcv.cvzl'vm, (1/Gv)
and the additional conditions

nginv,cv,v. (1) p*¥2F (1) = ZSdiwianm(i) F(1)=

Here cy = ny/n, ek = Bz(ek—eo) (o::VTk)'1

1 Sy Ty

AW = (g P — g+ Ea = ) — Bzhv(1~,r)2(x‘*’ AT

;“(+) A<+) T F (])

Low,(1/ Hoy) = Sd1’d2’d2W(°) (12; V2YF* () F* (2) {H py (1) + How (2) — H o (') —

We may seek a solution of the system of Eqs. (4.8} in the form
Cow (1) = 63" (B — ) C (1)

where the functions C(1) are determined from the equations

p-';lF (1) =1%1/p*C) Egdi'dz'dzw“” (12;1°2)F* (1) F*(2) (p*C(1)—p, ¥ C' (1))
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The additional conditions (4.10), as a consequence of Eq. (4.13), are satisfied identically.

We consider the solution of the system of Eqs. 4.9). We introduce the functions

G() = De,G, (1) 9,(1) =G, (1) — G (1)
for which we have, from Eq. (4.10), the equations

AW e =T(/C) SewBow NP1 = eI (4 ) (4.16)

and the additional conditions
(atvee ) F ) = Sato, () F 1) =0 4.17)

where ¥;° is ¢; [see Eqgs. (2.1)] when ¢; =1 (and not Syv'); the integrals I1{(1/G) and 1 (1/¢y) may be ob-
tained from Eqgs. (4.13) and (4.15) by replacing Hyy (i) by G(i) and p;*C(1) by ¢y (1), respectively. In writ-
ing the Eqs. (4.16) we have accounted for the fact that, by definition,

2 e, =0
From Eqs. (4.16) it follows that G and ¢,, may be sought in the form

G)=—R() ey, ¢,(1)=c;' Dcy Bow [0

()

The functions R and wy™' are determined from the equations

A)y=I1/R), M=IY(1/e{P) (4.18)
()

for the additional conditions {4.17), where in place of G and ¢_ it is necessary to insert R and w(™ , respec-
tively. The functions A(1) and Ai(i) are determined from the relations (4.11) and (4.12).

Thus for the function of the first approximation with respect to the Knudsen number we have the fol-
lowing expression:

£ (4) = P (1) O (1) — F (1) € (1) py* grad nyin — noF (1) R (1) B 2 +

C‘-n'ﬂk

1 (E)
+—-F(1) %‘]n,,;BW [or”] (4.19)

' 1
5. Using the expression (4.19) for f‘(,i) (1), we can determine first-order corrections with respect to
the Knudsen number to the currents and sources of the gas-dynamic equations and write the gas-dynamic
equations in the Navier—Stokes approximation. ’

In accord with the definition (2.5), we have, taking Eq. {4.19) into account,

jP = —nDgradn,/n (5.1)

where the "self-diffusion coefficient" D is given by
D= \dip*cH)F 1)
- Smnx I

The term proportional to the gradient 8, on which the function <I>(1) depends [8], does not contribute
to Eq. (6.1) in view of the additional conditions for this function. If we assume that during a collision the
rotational states are not excited and that there is merely an exchange taking place between the translational
and vibrational states, then we obtain from Eq. (5.1) the expression for j;, obtained in [12].
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The energy current can be written in the form

g = —Agrad T

where T is the temperature and X is a known [8] thermal conductivity coefficient for the model of the rota~
tors. As a consequence of Eq. (4.14), the term proportional to the gradient of ny does not contribute to the
current of energy.

We have the following expression for the stress tensor pl);

ot o

ar l;‘r

PO ——n( —%&jdiv u) —8ij(mydivu— P,)
where 7 and ny are known [8] shear and volume viscosity coefficients for the rotator model, and P, is the
so-called relaxational pressure, defined as follows:

ek—eo

p= 2 gl Nt RO F ()
i.e., the relaxational pressure is proportional to the deviation of the vibrational energy density from its
local-equilibrium value for the temperature of the translational and rotational degrees of freedom of the
molecules. A dependence, similar in form, of the relaxational pressure on the vibrational energy density
in the "two-temperature approximation" was obtained in [13} for the harmonic oscillator model in which ex-
changes between translational and vibrational degrees offreedomare not accompanied by a change in the
rotational states of the molecules.

Substituting the expressions obtained, in the zeroth and first approximations with respect to the Knud-
sen number, for the currents and sources of the gas-dynamic variables into the system of Egs. (2.2), we
obtain the gas-dynamic equations in the Navier—Stokes approximation. Taking note of the expression for
Qg), we readily see that in this approximation the gas-dynamic equations cannot, as in the Euler approxi-
mation, be represented in the form of a closed system of equations for n, u, 3, and ey, and it is necessary.
to consider equations for ny.

The determination of the relaxational pressure, the vibrational relaxation time, and also the sources
Qy and Qg is tied in with the solution of the linear integral equations written out above. However, in solv-
ing these equations it is necessary to know the Mellor operators for the rigid rotators and not merely the
corresponding transition probabilities. At the present time the solution of the quantum-mechanical problem
is beset with considerable computational difficulty, so that quantitative estimates are not considered in this

paper.

In conclusion, the author thanks V. N. Zhigulev and V. S. Galkin for a discussion of his results.
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